Call us:
0-9
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
  Quaker  ·  Quantum Physics  ·  Quarrel  ·  Quasars  ·  Queen  ·  Question  ·  Quiet & Quietness  ·  Quote & Quotation  
<Q>
Quantum Physics
Q
  Quaker  ·  Quantum Physics  ·  Quarrel  ·  Quasars  ·  Queen  ·  Question  ·  Quiet & Quietness  ·  Quote & Quotation  

★ Quantum Physics

Quantum Physics & Quantum Mechanics & Quantum Theory: see Atom & Particle & Uranium & Einstein & Universe & Space & Multiverse & Parallel Universe & Nanotechnology & Little & Physics & Science & Electron & Proton & Particle Accelerators & Photon & Neutrino & Strange & String Theory & M Theory

Michio Kaku - George Gamow - Stephen Hawking TV - Jim Al-Khalili TV - Morgan Freeman TV - Brian Cox TV - The Universe TV - Lawrence M Krauss - Star Trek: The Next Generation TV - Timothy Leary - Werner Heisenberg - Leonard Susskind - Erwin Schrodinger - David Deutsch - Paul A M Dirac - Neil Turok - David Spiegelhalter - Niels Bohr - Copenhagen 2002 - Richard Feynman - Steven Weinberg - Michael Mosley TV - Weird or What? TV - Brian Greene TV - BBC Horizon - Richard Dawkins TV - Arthur Compton - Monsignor George Lemaitre - William Bragg - Fritjof Capra - David Gross - Eugene Paul Wigner - The Universe TV - Secrets of the Universe: Great Scientists in Their Own Words TV - Sylvia Nasar -   

 

 

2,652.  It is often stated that of all the theories proposed in this century, the silliest is quantum theory.  In fact, some say that the only thing that quantum theory has going for it is that it is unquestionably correct.  (Science & Quantum Theory & Theory & Physics)  Michio Kaku, Hyperspace: A Scientific Odyssey

 

 

48,772.  Common sense has no place in the quantum world.  (Quantum Physics & Common Sense)  Professor Michio Kaku

 

 

86,133.  Everything about Quantum Theory revolted Einstein.  (Quantum Physics & Einstein)  Professor Michio Kaku

 

 

86,134.  In the bizarre quantum world we have electrons that literally disappear, re-appear some place else.  Electrons that can be in multiple places at the same time.  (Quantum Physics & Electron & Multiverse)  Professor Maicho Kaku, author Physics of the Impossible

 

 

89,953.  Each vibration of the string corresponds to a particle.  Therefore string theory is a quantum theory.  The jumble of particles we see is nothing but the jumble of notes vibrating on the string.  (String Theory & Particle & Quantum Physics)  Professor Michio Kaku   

 

 

2,724.  We do not know why they [elementary particles] have the masses they do; we do not know why they transform into another the way they do; we do not know anything!  The only concept that stands like the Rock of Gibraltar in our sea of confusion is the Pauli principle.  (Universe & Particles & Quantum Physics)  George Gamow, cited Scientific American July 1959 

 

 

2,752.  Hawking was going to have to unify the two great but very different theories of physics – Einstein’s theory of relativity is the theory of the very large ... Quantum physics is the theory of the very small ... Hawking would have to force the two together.  (Universe & Theory of Everything & Theory of Relativity & Quantum Physics)  Stephen Hawking, Master of the Universe

 

 

2,764.  Inside the atoms the universe was revealed to be a strange, chaotic place.  (Universe & Atom & Quantum Physics)  Stephen Hawking’s Grand Design: The Key to the Cosmos

 

2,765.  The tiny electrons appeared to be defying the laws of physics.  (Universe & Electron & Laws & Physics & Quantum Physics)  ibid. 

 

 

86,180.  Sub-atomic level and you enter a world where conjuring something out of nothing is possible at least for a short while.  That’s because at this scale particles such as protons behave according to the laws of Nature we call Quantum Mechanics.  And they really can appear at random.  (Quantum Physics & Particle)  Professor Stephen Hawking, Did God Create the Universe?

 

 

86,190.  The world of the minute has its own peculiar laws.  And it was at this scale, millions of times smaller than a single atom, that the universe began.  The study of the sub-atomic world is called Quantum Mechanics. Stephen Hawkings Universe: Answer to Everything

 

86,191.  Think of it as a game of chance.  Quantum mechanics is based on Werner Heisenberg’s Uncertainty Principle.  A sub-atomic particle is too small to see directly.  We can never know with precision where something that small really is.  But as it moves it traces a path we can try to predict.  ibid.

 

 

2,922.  Heisenberg’s Uncertainty Principle ... The more I know about where something is, the less I know about how it is moving.  In the Quantum world I cannot at the same time know both these quantities exactly.  (Universe & Astronomy & Quantum Physics & Particle)  Professor Jim Al-Khalili, Everything & Nothing: Nothing

 

2,923.  Heisenberg showed in his mathematics that this is an inescapable feature of reality on this scale.  (Universe & Astronomy & Quantum Physics & Particle)  ibid. 

 

2,924.  If particles can pop into existence, where do they go?  (Universe & Astronomy & Quantum Physics & Particle)  ibid.

 

2,925.  By 1928 Physics was struggling with a big problem.  The two most important theories that describe how the universe worked didn’t agree with each other.  (Universe & Astronomy & Quantum Physics & Theory of Relativity & Physics & Theory)  ibid. 

 

2,926.  So it seems nothingness is a seething mass of virtual particles.  (Universe & Astronomy & Nothing & Particles & Quantum Physics)  ibid. 

 

2,927.  Nothing really has shaped everything.  And what’s more, we now have a way to see this(Universe & Astronomy & Nothing & Particles & Quantum Physics)  ibid.

 

2,928.  The teeming seething activity of the vacuum of nothing, and the quantum fluctuations with it were the seeds – seeds which grew into the universe we see today.  (Universe & Astronomy & Nothing & Vacuum & Particles & Quantum Physics)  ibid. 

 

 

49,148.  One of the most complicated concepts in the whole of science but one that underpins the entire universe: Bohr described the atom not as a solar system but as a multi-storey building: the ground floor is where the nucleus lives with the electrons occupying the floors above.  Mysterious laws mean the electrons can only live on the floors never in-between.  And other mysterious laws mean that sometimes they can instantaneously jump from one floor to another.  These are what we call Quantum jumps.  (Atom & Quantum Physics)  Professor Jim Al-Khalili, Atom: The Clash of the Titans

 

49,149.  The old school reacted angrily.  Leading the traditionalists was the giant from the Physics world Albert Einstein.  He hated Bohr’s ideas.  And he was going to fight them.  Anything to save the world of order and common sense from this assault by madness.  (Atomic & Quantum Physics)  ibid.

 

86,185.  The question [Wolfgang] Pauli’s idea tried to answer was this: every atoms is made of the same simple components, so why do they appear to us in so many different guises, in such a rich variety of colours, textures and chemical properties.  (Quantum Physics & Atom)  ibid.

 

49,150.  He [Schrodinger] argued that the electron actually was the wave of energy vibrating so fast it looked like a cloud around the atom.  A cloud-like wave of pure energy ... The equation he came up with we call Schrodinger’s wave equation.  (Atomic & Quantum Physics)  ibid. 

 

49,151.  If we know where an electron is at a particular moment in time, we cannot know how fast it is moving.  But if we knew the speed, we wouldn’t know the position ... It became known as Heisenberg’s Uncertainty principle.  (Atomic & Quantum Physics)  ibid.

 

49,152.  They’re self-contradictory: they behave both like particles and waves.  And it gets weirder.  When you’re not looked at an atom it behaves like a spread-out wave.  But when you look to see where it is, it behaves like a particle.  This is insane.  (Atomic & Quantum Physics)  ibid.

 

86,186.  The quantum mechanical description of the atom is one of the crowning glories of human creativity.  ibid.

 

 

86,187.  The measurement problem ... An atom only appears in a particular place if you measure it.  In other words an atom is spread out all over the place until a conscious observer decides to look at it.  So the act of measurement or observation creates the entire universe.  (Quantum Physics & Atom & Measurement & Reality & Observation & Experiment)  Professor Jim Al-Khalili, Atom: The Illusion of Reality

   

 

86,143.  Beneath the complexities of everyday life the rules of our universe seem reassuringly simple ... But as scientists peered deep into the tiny building blocks of matter all such certainty vanished.  They found the weird world of quantum physics.  Jim Al-Khalili, The Secrets of Quantum Physics: Einstein's Nightmare, BBC 2014

 

86,144.  In the realm of the very small things can be in two places at once.  ibid.

 

86,145.  A battleground about the nature of reality itself.  ibid.

1